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Abstract
Using the Thomas–Fermi (TF) model we describe the electron density
distribution that neutralizes two static positive charge distributions, one being
planar and the other linear. The first case admits an analytical solution, the
second solution is numerical. The various energy terms are calculated and
the virial theorem verified. These results are compared with the electron
distribution that neutralizes a point-like positive charge, i.e. the familiar TF
model for the atom.

PACS numbers: 31.15.Bs, 31.15.−p, 31.15.Ew

1. Introduction

From an academic point of view, due to its simplicity and elegance, the Thomas–Fermi (TF)
model [1, 2] is an almost obligatory first step in atomic physics courses [3–5] previous to
more accurate descriptions of the structure of the heavy atoms such as the Hartree–Fock
equations [6] or the density functional methods [7, 8]. In addition, the TF equation continues
to attract the attention of researchers as a testing ground for new mathematical strategies and
refinements [9–16].

In this paper we present and solve two new and interesting TF problems which, in a sense,
are complementary to the habitual case in which a degenerate electron distribution neutralizes
a point-like fixed positive charge. Here we analyse the electron distribution that neutralizes the
other basic geometrical entities in three dimensions, i.e. an infinite uniform planar distribution
and an infinite uniform straight-line distribution.

A real system amenable to an approximate description such as a planar distribution of
positive charge immersed in a electron sea, is a graphite layer, i.e. a surface inlaid with regular
hexagons at the vertices of which are situated carbon atoms. The distance between nearest-
neighbour nuclei is 1.42 Å and the covalent bonds in a layer are much stronger than the forces
between layers in a graphite crystal. The interlayer binding in graphite has been calculated
in [17] using a method akin to the TF model.

Graphite layers can also adopt the form of a lengthy structure such as a hollow cylinder.
This type of structure, referred to as nanotubes [18], is receiving widespread attention from
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scientists and technologists. The nanotubes can reach tens of micrometres in length, which is
several orders of magnitude in excess of their diameters usually ranging from one to several
nanometres. Other examples of quasi-one-dimensional materials amenable to a description
such as a macromolecular chain of ions surrounded by an electron cloud, are the organic
conducting polymers, such as polyacetylene [19].

The paper is organized as follows. In section 2 we recall the basic equations of the TF
model and the boundary conditions to be fulfilled by the solution. In section 3, for reference, this
model is applied to the atom. In section 4 we describe the planar case, write the corresponding
TF equation and obtain its analytical solution. Section 5 is devoted to the linear case, the TF
equation is written and its numerical solution obtained. The calculation of the energy terms in
the three problems is done in section 6. In section 7 we analyse the specific predictions of the
virial theorem (VT) for these three cases. Finally, in section 8 we present a discussion of the
results.

2. Hypotheses of the Thomas–Fermi model

The TF model describes electron distributions at zero temperature, and is based on three
assumptions.

(i) The electron density, n(�r), and the electrostatic potential, φ(�r), are related by Poisson’s
equation

�∇2φ = 4πen, (2.1)

where e = |e| is the elementary positive charge.
(ii) The equation of state of the electron cloud is that of a degenerate Fermi gas

n = p3
F

3π2h̄3 , (2.2)

where pF = | �pF (�r)| is the Fermi momentum of the electrons, and h̄ = h/2π is the
reduced Planck constant.

(iii) The condition of hydrostatic equilibrium is fulfilled throughout the electron cloud

p2
F

2m
− eφ = C, (2.3)

where m is the electron mass and C is an arbitrary constant. For neutral systems, φ is
considered null at infinity and therefore, from now on, we will take C = 0.
By eliminating pF from equations (2.2) and (2.3) we obtain

n = (2m)3/2

3π2h̄3 (eφ)
3/2, (2.4)

and by eliminating n from equations (2.1) and (2.4), we obtain

�∇2φ = 4πe
(2m)3/2

3π2h̄3 (eφ)
3/2. (2.5)

In the problems studied here there will be only one relevant spatial coordinate and hence
equation (2.5) will be an ordinary second-order differential equation, whose solution requires
two initial conditions or two boundary conditions. For these problems, a first boundary
condition will come by imposing on the electric field a known behaviour in positions near
the naked positive charge distribution. The second boundary condition simply comes from the
assumed global neutrality of the system.
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It will be useful to express equation (2.5) in dimensionless variables: the non-dimensional
relevant distance will be called x and the non-dimensional dependent variable will be called
χ . Thus, n and φ will be simple functions of χ , and the length unit relating actual distances
and x will be called b. This b is the TF scale length of each problem. In terms of χ and x
equation (2.5) will adopt a universal aspect and the solution that fulfils the mentioned boundary
conditions is applicable to any particular case.

3. TF model for the atom

In this case, we deal with Z electrons neutralizing a point-like static positive charge equal to
Ze, which is located at �r = 0. Here it is convenient to use spherical polar coordinates �r(r, θ, ϕ)
and in this problem r will be the only relevant coordinate.

The first condition to be fulfilled by φ(�r) is that the resulting electric field must have the
following limit:

�E(�r)|r→0 = Ze2

r2
�er , (3.1)

where �er is the unitary vector in the radial direction. That is, the electric field near the origin
must coincide with that created by the naked nuclear charge. The second boundary condition,
i.e. that of neutrality, is expressed as:∫

n d�r = Z. (3.2)

Bearing in mind equation (3.1), an adequate definition of the dimensionless function χ is

eφ = Ze2χ

r
, (3.3)

and inserting equation (3.3) into (2.5), we obtain

d2χ

dr2
= Aχ

3/2

r1/2
, (3.4)

with

A = 4e3(2m)3/2

3πh̄3 Z1/2.

Now, by using r = bx, with

b = κaBZ−1/3, (3.5)

κ = (3π)2/3/27/3 = 0.885 34 . . . and aB the Bohr radius, equation (3.4) converts into

χ̈ = χ3/2

x1/2
, (3.6)

which is the dimensionless universal TF equation for this problem [1–6]. Here and henceforth
a dot on a variable means a derivation with respect to x. In terms of χ , we have

n = κ ′Z
2

a3
B

(
χ

x

)3/2

, (3.7)

with κ ′ = (32/9π3).
The first boundary condition (3.1) imposes

χ(0) = 1. (3.8)
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Figure 1. Universal Thomas–Fermi solution, χ , for the three cases studied in the text, (a) the atom,
(b) the plane and (c) the line.

If xa represents the radial distance, expressed in b units, where n vanishes, i.e. from
equation (3.7)

χ(xa) = 0, (3.9a)

the second boundary condition (3.2) imposes

xaχ̇(xa) = 0. (3.9b)

Actually, the conditions (3.9) demand that xa should be infinite. In fact the asymptotic
behaviour of χ is [8, 10, 20]

χ(x)|x→∞ = 144

x3
+ · · · . (3.10)

The numerical solution of equation (3.6) fulfilling equations (3.8) and (3.9) appears tabulated
in many texts [3–5, 10]. We plot this in figure 1 (curve a) for comparison.

4. Analytic Thomas–Fermi solution for the planar distribution

Consider a homogeneous positive charge distribution located in the plane z = 0. The number
of positive charges per surface unit will be σ . We will find the electron distribution that
neutralizes, at the two sides of the plane, this positive planar distribution. The Cartesian
coordinates �r(x, y, z) are appropriate, and the distance, |z|, to the positively charged plane
will be the only relevant coordinate.

The first condition to be fulfilled by φ(z) is that the resulting electric field must have, for
example, for z > 0, the following limit:

�E(z)|z→0 = 2πσe�ez, (4.1)

where �ez is the unitary vector in the positive z-direction. This is to coincide with the field
created by the naked positive distribution (for z < 0, the electron distribution is identical).
The second condition, i.e. that of global neutrality, is expressed as

σ =
∫
n dz. (4.2)

Taking into account equation (4.1), an adequate definition of the dimensionless function χ is

eφ = 2πσe2bχ, (4.3)
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where b is the TF scale length. And inserting equation (4.3) into (2.5) we obtain

d2χ

dz2
= Bχ3/2, (4.4)

with

B = 16

3h̄3

(
m3σ

π

)1/2

e3b1/2.

Now we pass to non-dimensional distances x, z = bx (note that x is not used as a Cartesian
coordinate). Adopting

b = (36π)1/5

4
σ−1/5a

3/5
B , (4.5)

then equation (4.4) converts into

χ̈ = χ3/2, (4.6)

which is the non-dimensional TF equation for this problem. In terms of χ , we have

n =
(

8

9π

)1/5
σ 6/5

a
3/5
B

χ3/2. (4.7)

In terms of χ and x, equation (4.1) imposes that

χ̇(0) = −1. (4.8)

Denoting by xa the distance where the electron density vanishes, from equation (4.7) we obtain

χ(xa) = 0, (4.9a)

and equation (4.2) imposes that

χ̇(xa) = 0. (4.9b)

In a second-order differential equation, the two conditions (4.9), in fact, impose that xa → ∞.
Thus, we have to find a solution of equation (4.6) which fulfils equations (4.8) and (4.9). This
nonlinear second-order differential equation is analytically solved: we borrow the solution
from another TF problem [16],

χ = 400

[x + 16001/5]4
. (4.10)

This function is plotted in figure 1 (curve b), and its asymptotic behaviour is

χ(x)|x→∞ = 400

x4
+ · · · , (4.11)

and its value at x = 0 is

χ(0) = ( 5
4 )

2/5 = 1.093 36 . . . . (4.12)

5. Thomas–Fermi solution for the linear distribution

Consider a homogeneous positive charge distribution located along the axisOZ. The number
of positive charges per length unit will be called λ. In this problem we will find, in the
TF model, the electron distribution that neutralizes this positive straight line distribution.
Cylindrical coordinates �r(z, �ρ) are appropriate, �ρ ≡ (ρ, ϕ) being the planar polar coordinates,
and the distance ρ to the positively charged line will be the only relevant coordinate of this
problem.
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As in previous sections, the first condition to be fulfilled by φ(ρ) is that the resulting
electric field must have the following limit:

�E(ρ)|ρ→0 = 2λe

ρ
�eρ, (5.1)

where �eρ is the unitary vector in the planar radial direction. This is in order to coincide with
the field created by the naked positive distribution. The second condition, i.e. the condition of
global neutrality, reads

λ =
∫
n d �ρ. (5.2)

Taking into account equation (5.1), an adequate definition of the dimensionless function χ is

eφ = −2λe2 ln(xχ), (5.3)

where ρ = bx, and b will be fixed later. It is worth noting at this stage that the electric field
resulting from the change of variable (5.3) is

�E(ρ) = 2λe

b

[
1

x
+
χ̇

χ

]
�eρ, (5.4)

which means that the imposition of equation (5.1), strictly speaking, does not fix the behaviour
of χ(0) nor that of χ̇(0), as it did in the two cases considered before. However, a simple option
fulfilling the requirement of equation (5.1) is to take χ̇(0) = 0 and χ(0) finite and unknown;
the appropriateness of this option will be confirmed later. By inserting equation (5.3) into (2.5)
and fixing b as

b =
(

3π

16

)1/2

λ−1/4a
3/4
B , (5.5)

we obtain the dimensionless TF equation for this problem:

χ̈ = − χ̇
x

+
χ̇2

χ
− χ [− ln(xχ)]3/2. (5.6)

In terms of χ and x, the particle density is

n = 8

3π2

λ3/2

a
3/2
B

[− ln(xχ)]3/2. (5.7)

Hence the equation (5.2) adopts the form∫ xa

0
x[− ln(xχ)]3/2 dx = 1, (5.8)

where xa represents again the distance where n vanishes, i.e. from equation (5.7)

xaχ(xa) = 1. (5.9a)

Then, equation (5.8) can be elaborated by using (5.6) leading to

xaχ̇(xa) = −1. (5.9b)

Conditions (5.9) demand that xa should be infinite.
Now, directly proceeding from equation (5.6) one can identify the behaviour of the solution

that goes asymptotically to zero. It reads

χ(x)|x→∞ = 1

x
− 256

x5
+
(256)2

2x9
+ · · · . (5.10)
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Likewise, analysing the behaviour of χ for x → 0 in (5.6) the result is that for χ(0) finite,
χ̇(0) = 0, confirming our above commented option. Thus, we can now apply the Runge–
Kutta method to the integration of equation (5.6) by departing from the origin with a null
slope and identifying the appropriate χ(0) such that the asymptotic behaviour is that written
in equation (5.10). When this program is carried out one finds the numerical solution plotted
in figure 1 as curve (c). The value of χ(0) is

χ(0) = 0.888 116 . . . . (5.11)

For x � 15, the values of χ(x) and that of equation (5.10) are practically coincident.

6. Energy terms

In each of the problems considered, we can distinguish three contributions to the energy of
the system: the kinetic energy, the electrostatic attractive term and the electrostatic repulsive
term. In this section, we will calculate the value of these nine terms. For the atom, the energy
terms represent the contribution of the whole system. For the planar and linear cases, however,
due to their infinite extension, we calculate energy per surface unit and energy per length unit
respectively. That is, we calculate energy densities.

The kinetic energy term, in general, is given by

Ekin =
∫
tn d�r, (6.1a)

with

t = 3h̄2

10m
(3π2)2/3n2/3 (6.1b)

where t is the average kinetic energy of a degenerate Fermi gas.
To calculate the two electrostatic terms we consider the splitting of the electric potential

φ = φ+ + φ−, (6.2)

as a sum of φ+, i.e. the contribution of the positive charge distribution plus φ−, i.e. the
contribution of the electron distribution. φ+, is known, and φ is deduced from the TF function
χ , and hence φ− is also easily deduced. Thus in general, the two electrostatic terms are

Va = −e
∫
φ+n d�r (6.3)

and

Vr = − e
2

∫
φ−n d�r. (6.4)

6.1. The atom

From equation (6.1), in this case we have

Ekin = 4π
3h̄2

10m
(3π2)2/3

∫ ∞

0
n5/3r2 dr, (6.5)

and using equations (3.5)–(3.7) we obtain

Ekin = 3

5

Z2e2

b

(
−χ̇(0)−

∫ ∞

0
χ̇2 dx

)
. (6.6)
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Besides, from equation (6.3),

Va = −4πZ2e2
∫ ∞

0

n

r
r2 dr. (6.7)

And with equations (3.5)–(3.7) again, we obtain

Va = Z2e2

b
χ̇(0). (6.8)

Finally, from equation (6.4),

Vr = −4π
e

2

∫ ∞

0
φ−nr2 dr, (6.9)

using

φ− = Ze

r
χ − Ze

r
, (6.10)

and with the same substitutions as before, we obtain

Vr = Z2e2

2b

∫ ∞

0
χ̇2 dx. (6.11)

The values of χ̇(0) and
∫ ∞

0 χ̇2 dx can be numerically obtained [3, 10], and amount to

χ̇(0) = −1.588 . . .∫ ∞

0
χ̇2 dx = 0.454 . . . .

(6.12)

6.2. Planar case

Here we compute energy density terms. Equation (6.1a) now reads

Ekin/S = 3h̄2

10m
(3π2)2/32

∫ ∞

0
n5/3 dz, (6.13)

and expressing n in terms of χ , and taking into account equations (4.5)–(4.7), we obtain

Ekin/S = 6
5Cplane

(
χ(0)−

∫ ∞

0
χ̇2 dx

)
, (6.14)

where Cplane is defined by

Cplane = 9π2

64(36π)1/5
σ 6/5a

12/5
B

e2

b3
. (6.15)

As

φ+ = −2πσez, (6.16)

we deduce from equation (6.3)

Va/S = 2πσe22
∫ ∞

0
n(z)z dz, (6.17)

and from this, plus equations (4.5)–(4.7), we obtain

Va/S = 2Cplaneχ(0). (6.18)

Finally, for the repulsion energy, equation (6.4) becomes

Vr/S = − e
2

2
∫ ∞

0
φ−n(z) dz, (6.19)
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and using the usual substitutions, we obtain

Vr/S = −Cplane
(

2χ(0)−
∫ ∞

0
χ̇2 dx

)
. (6.20)

In this problem χ(0) and
∫ ∞

0 χ̇2 dx are analytically calculated, χ(0) is given in equation (4.12)
and the other quantity amounts to∫ ∞

0
χ̇2 dx = 4

9 (
5
4 )

2/5 = 0.485 938 . . . . (6.21)

6.3. Linear case

Here, the calculated energies are per unit length. Therefore, equation (6.1) is given by

Ekin/L = 3h̄2

10m
(3π2)2/32π

∫ ∞

0
n5/3ρ dρ, (6.22)

and with the substitutions (5.5) and (5.7), we obtain

Ekin/L = 6
5ClineIk, (6.23a)

where

Ik =
∫ ∞

0
x[− ln(xχ)]5/2 dx, (6.23b)

and Cline is given by

Cline = 3π

16
λ3/2a

3/2
B

e2

b2
. (6.24)

As from equation (6.3)

Va/L = −2πe
∫ ∞

0
φ+nρ dρ, (6.25)

and

φ+ = −2λe ln x, (6.26)

then

Va/L = 2ClineIa, (6.27a)

with

Ia =
∫ ∞

0
x ln x[− ln(xχ)]3/2 dx. (6.27b)

Finally, as

φ = −2λe ln(xχ), (6.28)

we find, with the habitual substitutions,

Vr/L = ClineIr , (6.29a)

with

Ir =
∫ ∞

0
x ln χ [− ln(xχ)]3/2 dx. (6.29b)

The three integrals Ik , Ia and Ir are numerically calculated. The results are

Ik = 0.624 978 . . .

Ia = 0.091 402 . . .

Ir = −0.716 381 . . . .

(6.30)
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Having obtained the three energy terms for the three problems, we can check that for the
atom the relation, 2Ekin = −(Va +Vr), is verified but it is not in the other cases. This equation
is what one expects in a first instance as the implication of the VT for bound many-particle
systems with 1/r2 forces. The reason why this relation is not fulfilled in the two extended
cases is explained in the next section.

7. Implications of the virial theorem

According to the VT, the total kinetic energy of a bound many-body system, Ekin, is given by

2Ekin = I = −
〈∑
i

�ri · �Fi
〉
, (7.1)

where I is known as the virial of the system. �Fi denotes the force acting on the ith particle
whose position is defined by �ri , and the brackets denote the time average. In the systems
considered here, the force acting on an electron is due to a net electrostatic effect comprising
the attraction of the static positive charge and the repulsion of the rest of the electrons. Besides,
in the planar (linear) case as we calculate the energy terms per unit surface (length), in the
calculus of I one must introduce the pressure effect exerted by the electrons lying just on the
other side of the border that defines our subsystem. For this reason, in general, we define

I = Ie + Ib, (7.2)

where Ie comes from the net electrostatic effect mentioned above and Ib comes from the
boundary effect on the subsystem. Passing to the continuum, we have

Ie = −e
∫
n(�r · �∇φ) d�r. (7.3)

In the following subsections, we will verify the VT and express I in terms of the energy terms
calculated in section 6.

7.1. The atom

In this case Ib = 0 and equation (7.3) is

Ie = −4πe
∫ ∞

0
nr3

(
dφ

dr

)
dr. (7.4)

Ie, in non-dimensional variables, adopts the form

Ie = −N
2e2

b

∫ ∞

0

{
d

dx

(
χ

x

)}(
χ

x

)3/2

x3 dx. (7.5)

Integrating by parts, one obtains

Ie = 6

5

N2e2

b

∫ ∞

0

(
χ

x

)5/2

x2 dx, (7.6)

and using equation (3.6), and integrating by parts again, we obtain

Ie = −6

5

N2e2

b

(
χ̇(0) +

∫ ∞

0
χ̇2 dx

)
. (7.7)

Using the energy term expressed in equation (6.6), we can now identify the fulfilment of the
VT (2Ekin = Ie). Besides, considering equations (6.8) and (6.11), we can write

Ie = − 6
5 [Va + 2Vr ]. (7.8)
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On the other hand, if in equation (7.5) we proceed in a different way by acting first with the
derivative in the integrand, and then integrating by parts, we finally obtain

Ie = −[Va + Vr ]. (7.9)

Thus, equations (7.8) and (7.9) permit the expression of the three energy terms as a function
of only one of them. For example, Vr ,

Ekin = 3Vr
Va = −7Vr.

(7.10)

7.2. Planar case

Here, our subsystem is, for example, a prism whose axis is coincident with the Oz axis, and
its base is a square of unit surface. The origin of coordinates is the centre of that square. And
we will apply equation (7.1) to the electron population that lies within this prism.

As mentioned, here Ib/S comes from the pressure existing at the lateral surface of the
prism. This effect amounts to

Ib/S = 4
∫ ∞

0
p dz, (7.11)

where p denotes pressure. The equation of state of a degenerate Fermi gas is

p = 1

5
(3π2)2/3

h̄2

m
n5/3. (7.12)

Inserting this into equation (7.11) and comparing with equation (6.1), we identify the relation:

Ib/S = 4
3Ekin/S. (7.13)

Thus, having identified Ib/S, the VT relation predicts the following relation
2
3Ekin/S = Ie/S. (7.14)

In this problem, we see that equation (7.3) becomes

Ie/S = −2e
∫ ∞

0
nz

(
dφ

dz

)
dz. (7.15)

In dimensionless variables, Ie/S reads

Ie/S = −2Cplane

∫ ∞

0
xχ̇χ3/2 dx. (7.16)

After the analytical integration of Ie/S we obtain

Ie/S = 4
9 (

5
4 )

2/5Cplane, (7.17)

which coincides with the value of the left-hand side of equation (7.14), which was obtained in
section 6, and thus the VT is fulfilled. Besides, equation (7.16) can be used to express Ie/S
as a function of the energy terms of this problem. Proceeding by first integrating by parts
or, alternatively, by differentiating first, then integrating and finally taking into account the
behaviour of χ , we obtain

Ie/S = Va/S + Vr/S, (7.18a)

or

Ie/S = − 4
5 (

1
2Va/S + Vr/S). (7.18b)

From these results and equation (7.14) we deduce

Ekin/S = − 3
7Vr/S

Va/S = − 9
7Vr/S.

(7.19)
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7.3. Linear case

In this case, the analysed subsystem is formed by the electron population contained within
a cylinder whose axis coincides with the OZ axis, whose height is unity and the radius of
the base is infinity. Thus, the pressure effect exerted by the exterior electrons is calculated
by considering the existing pressure on the two bases of the cylinder. Its contribution to the
virial is

Ib/L = 2π
∫ ∞

0
pρ dρ, (7.20)

inserting equation (7.12), we obtain

Ib/L = 2
3Ekin/L, (7.21)

and therefore, in this problem the VT relation is expressed
4
3Ekin/L = Ie/L. (7.22)

Here, equation (7.3) becomes

Ie/L = −2πe
∫ ∞

0
nρ2

(
dφ

dρ

)
dρ. (7.23)

In dimensionless variables equation (7.23) reads as

Ie/L = 2Cline

∫ ∞

0
x2

{
d

dx
[ln(xχ)]

}
[− ln(xχ)]3/2 dx. (7.24)

Equation (7.24) can be worked out by integration by parts. This leads to

Ie/L = 8
5Cline

∫ ∞

0
x[− ln(xχ)]5/2 dx, (7.25)

which can be identified (6.23) as

Ie/S = 4
3Ekin/S, (7.26)

and thus the VT is fulfilled. On the other hand, equation (7.25) can be expressed as a function
of the electrostatic energy terms (6.27) and (6.29) as

Ie/L = 8
5Cline

∫ ∞

0
x[− ln(xχ)]3/2[− ln x − ln χ ] dx = − 4

5 [Va/L + 2Vr/L]. (7.27)

Finally, we carry out the integration of equation (7.24) from another perspective

Ie/L = 2Cline

∫ ∞

0

{
x

d

dx
[− ln(xχ)]

}{
d

dx

{
x

d

dx
[− ln(xχ)]

}}
dx, (7.28)

where we have used the TF equation (5.6) and hence

Ie/L = 2Cline

∫ ∞

0

1

2

{
d

dx

{
x

d

dx
[− ln(xχ)]

}2}
dx =

{
x

d

dx
[− ln(xχ)]

}2∣∣∣∣
∞

0

. (7.29)

In section 5, we obtained for χ the asymptotic limit (5.10). Hence we deduce

Ie/L = Cline lim
x→0

[
x

{
1

x
+
χ̇

χ

}]2

. (7.30)

Therefore, given the behaviour of χ at x = 0, we can write

Ie/L = Cline, (7.31)

and with equation (7.26)

Ekin/L = 3
4Cline. (7.32a)
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The reader should notice that (7.32a) coincides with the numerical result obtained in
equations (6.23a) and (6.30). Using equations (7.27) and (7.31) we have

Va/L = − 5
4Cline − 2Vr/L. (7.32b)

The two relations (7.32a) and (7.32b) are equivalent to (7.10) and (7.19) obtained for the other
problems.

8. Results and discussion

In this paper we have obtained the TF solution for the electron distribution that neutralizes two
distributions of static positive charge: one planar and the other straight linear. The classical
case of electrons neutralizing a point-like positive charge, i.e. the TF atom, is also discussed
as a reference and for comparison. By far, the linear case is the most cumbersome. These
solutions are interesting in themselves and besides provide a first approximation to the global
field that can be used as a starting point in a Hartree–Fock method. In figure 1 these three
solutions are shown. Note that the length scale b is different in each case, equations (3.5),
(4.5) and (5.5).

From the asymptotic behaviour of the respective TF solutions, χ , i.e. equations (3.10),
(4.11) and (5.10), one deduces the asymptotic behaviour of the electron density, n. We obtain

Point: lim
x→∞ n(x) ∝ lim

x→∞

(
χ

x

)3/2

∝
(

1

x4

)3/2

= 1

x6
, (8.1a)

Plane: lim
x→∞ n(x) ∝ lim

x→∞χ
3/2 ∝

(
1

x4

)3/2

= 1

x6
, (8.1b)

Line: lim
x→∞ n(x) ∝ lim

x→∞[− ln(xχ)]3/2 ∝
(

1

x4

)3/2

= 1

x6
. (8.1c)

Thus, in the three cases n has identical behaviour at large distances.
With respect to the small x behaviour of n, we deduce

Point: lim
x→0

n(x) ∝ 1

x3/2
, (8.2a)

Plane: lim
x→0

n(x) ∝ constant, (8.2b)

Line: lim
x→0

n(x) ∝ (− ln x)3/2. (8.2c)

In this paper we have emphasized the use of the electric field (and not the electrical
potential) in the vicinity of the naked positive charge to fix an initial condition of the TF
solution. In the TF atom this distinction is irrelevant, but especially in the linear case, the use
of φ leads to unnecessary troubles.

We have shown that the VT theorem is always fulfilled provided the appropriate boundary
terms, Ib, are added in the planar and in the linear cases. Along with this discussion, we have
also shown that in the three problems the energy terms can be expressed in terms of only one
term. This is obviously more restrictive than the VT relation itself.

It is also perhaps worth mentioning that, in the planar and linear cases, the sign of the
energy potential terms differs from what our initial intuition suggests for bound Coulomb many-
particle systems, i.e. attractive-energy negative, repulsive-energy positive and total energy
negative. See equations (6.18), (6.20) and (6.27), (6.29).
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[16] Sañudo J and Pacheco A F 2000 J. Phys. A: Math. Gen. 33 5913
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